
Pipelining

Chapter 4 — The Processor — 1

Chapter 4 — The Processor — 2

Pipelining Analogy
  Pipelined laundry: overlapping execution

  Parallelism improves performance

§4.5 A
n O

verview
 of P

ipelining   Four loads:
  Speedup

= 8/3.5 = 2.3
  Non-stop:

  Speedup
= 2n/0.5n + 1.5 ≈ 4
= number of stages

Chapter 4 — The Processor — 3

MIPS Pipeline
  Five stages, one step per stage

1.  IF: Instruction fetch from memory
2.  ID: Instruction decode & register read
3.  EX: Execute operation or calculate address
4.  MEM: Access memory operand
5.  WB: Write result back to register

Chapter 4 — The Processor — 4

Pipeline Performance
  Assume time for stages is

  100ps for register read or write
  200ps for other stages

  Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 5

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 6

Pipeline Speedup
  If all stages are balanced

  i.e., all take the same time
  Time between instructionspipelined

= Time between instructionsnonpipelined
 Number of stages

  If not balanced, speedup is less
  Speedup due to increased throughput

  Latency (time for each instruction) does not
decrease

Chapter 4 — The Processor — 7

Pipelining and ISA Design
  MIPS ISA designed for pipelining

  All instructions are 32-bits
  Easier to fetch and decode in one cycle
  c.f. x86: 1- to 17-byte instructions

  Few and regular instruction formats
  Can decode and read registers in one step

  Load/store addressing
  Can calculate address in 3rd stage, access memory

in 4th stage
  Alignment of memory operands

  Memory access takes only one cycle

Chapter 4 — The Processor — 8

Hazards
  Situations that prevent an instruction from

entering the next stage.
  Structural hazards

  A required resource is busy
  Data hazard

  Need to wait for previous instruction to
complete its data read/write

  Control hazard
  Deciding on control action depends on

previous instruction

Chapter 4 — The Processor — 9

Structural Hazards
  Conflict for use of a resource
  In MIPS pipeline with a single memory

  Load/store requires data access
  Instruction fetch would have to stall for that

cycle
  Would cause a pipeline “bubble”

  Hence, pipelined datapaths work best with
separate instruction/data memories
  Or separate instruction/data caches

Chapter 4 — The Processor — 10

Data Hazards
  An instruction depends on completion of

data access by a previous instruction
  add $s0, $t0, $t1
sub $t2, $s0, $t3

Chapter 4 — The Processor — 11

Forwarding (aka Bypassing)
  Use result when it is computed

  Don’t wait for it to be stored in a register
  Requires extra connections in the datapath

more on this later….

Chapter 4 — The Processor — 12

Load-Use Data Hazard
  Can’t always avoid stalls by forwarding alone

  If value not computed when needed
  Can’t forward backward in time!

stall + forwarding

Chapter 4 — The Processor — 13

Code Scheduling to Avoid Stalls
  Reorder code to avoid use of load result in

the next instruction
  C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles 13 cycles

Chapter 4 — The Processor — 14

Control Hazards
  Branch determines flow of control

  Fetching next instruction depends on branch
outcome

  Pipeline can’t always fetch correct instruction
  Still working on ID stage of branch

  In MIPS pipeline
  Nominally, branch condition is resolved in EX

stage, which leaves us with two stalls.
  They added branch delay slots – instruction

after branch is always executed. Now we only
have one stall to get rid of.

Chapter 4 — The Processor — 15

Branch Prediction
  Longer pipelines can’t readily determine

branch outcome early
  Stall penalty becomes unacceptable

  Predict outcome of branch
  Kill instructions after branch if prediction is

wrong

Chapter 4 — The Processor — 16

Pipeline Summary

  Pipelining improves performance by
increasing instruction throughput
  Executes multiple instructions in parallel
  Each instruction has the same latency

  Subject to hazards
  Structure, data, control

  Instruction set design affects complexity of
pipeline implementation

The BIG Picture

Chapter 4 — The Processor — 17

MIPS Pipelined Datapath
§4.6 P

ipelined D
atapath and C

ontrol

WB

MEM
Stage

Right-to-left
flow leads to
hazards

Chapter 4 — The Processor — 18

Pipeline registers
  Need registers between stages

  To hold information produced in previous cycle

Chapter 4 — The Processor — 19

Pipeline Operation
  Cycle-by-cycle flow of instructions through

the pipelined datapath
  “Single-clock-cycle” pipeline diagram

  Shows pipeline usage in a single cycle
  Highlight resources used

  c.f. “multi-clock-cycle” diagram
  Graph of operation over time

  We’ll look at “single-clock-cycle” diagrams
for load & store

Chapter 4 — The Processor — 20

IF for Load, Store, …

Chapter 4 — The Processor — 21

ID for Load, Store, …

Chapter 4 — The Processor — 22

EX for Load

Chapter 4 — The Processor — 23

MEM for Load

Chapter 4 — The Processor — 24

WB for Load

Wrong
register
number

Chapter 4 — The Processor — 25

Corrected Datapath for Load

Chapter 4 — The Processor — 26

EX for Store

Chapter 4 — The Processor — 27

MEM for Store

Chapter 4 — The Processor — 28

WB for Store

Chapter 4 — The Processor — 29

Multi-Cycle Pipeline Diagram
  Form showing resource usage

Chapter 4 — The Processor — 30

Multi-Cycle Pipeline Diagram
  Traditional form

Chapter 4 — The Processor — 31

Single-Cycle Pipeline Diagram
  State of pipeline in a given cycle

Chapter 4 — The Processor — 32

Pipelined Control (Simplified)

Chapter 4 — The Processor — 33

Pipelined Control
  Control signals derived from instruction

  As in single-cycle implementation

Chapter 4 — The Processor — 34

Pipelined Control

Chapter 4 — The Processor — 35

Data Hazards in ALU Instructions
  Consider this sequence:

 sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

  We can resolve hazards with forwarding
  How do we detect when to forward?

§4.7 D
ata H

azards: Forw
arding vs. S

talling

Chapter 4 — The Processor — 36

Dependencies & Forwarding

Chapter 4 — The Processor — 37

Detecting the Need to Forward

  Pass register numbers along pipeline
  e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register
  ALU operand register numbers in EX stage

are given by
  ID/EX.RegisterRs, ID/EX.RegisterRt

  Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

Chapter 4 — The Processor — 38

Detecting the Need to Forward
  But only if forwarding instruction will write

to a register!
  EX/MEM.RegWrite, MEM/WB.RegWrite

  And only if Rd for that instruction is not
$zero
  EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

Chapter 4 — The Processor — 39

Forwarding Paths

Chapter 4 — The Processor — 40

Forwarding Conditions
  EX hazard

  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10

  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

  MEM hazard
  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

Chapter 4 — The Processor — 41

Double Data Hazard
  Consider the sequence:

 add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

  Both hazards occur
  Want to use the most recent

  Revise MEM hazard condition
  Only fwd if EX hazard condition isn’t true

Chapter 4 — The Processor — 42

Revised Forwarding Condition
  MEM hazard

  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

Chapter 4 — The Processor — 43

Datapath with Forwarding

Chapter 4 — The Processor — 44

Load-Use Data Hazard

Need to stall
for one cycle

Chapter 4 — The Processor — 45

Load-Use Hazard Detection
  Check when using instruction is decoded

in ID stage
  ALU operand register numbers in ID stage

are given by
  IF/ID.RegisterRs, IF/ID.RegisterRt

  Load-use hazard when
  ID/EX.MemRead and

 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt))

  If detected, stall and insert bubble

Chapter 4 — The Processor — 46

How to Stall the Pipeline
  Force control values in ID/EX register

to 0
  EX, MEM and WB do nop (no-operation)

  Prevent update of PC and IF/ID register
  Using instruction is decoded again
  Following instruction is fetched again
  1-cycle stall allows MEM to read data for lw

  Can subsequently forward to EX stage

Chapter 4 — The Processor — 47

Stall/Bubble in the Pipeline

Stall inserted
here

Chapter 4 — The Processor — 48

Stall/Bubble in the Pipeline

Or, more
accurately…

Chapter 4 — The Processor — 49

Datapath with Hazard Detection

Chapter 4 — The Processor — 50

Stalls and Performance

  Stalls reduce performance
  But are required to get correct results

  Compiler can arrange code to avoid
hazards and stalls
  Requires knowledge of the pipeline structure

The BIG Picture

Chapter 4 — The Processor — 51

Exceptions and Interrupts
  “Unexpected” events requiring change

in flow of control
  Different ISAs use the terms differently

  Exception
  Arises within the CPU

  e.g., undefined opcode, overflow, syscall, …

  Interrupt
  From an external I/O controller

  Dealing with them without sacrificing
performance is hard

§4.9 E
xceptions

Chapter 4 — The Processor — 52

Handling Exceptions
  In MIPS, exceptions managed by a System

Control Coprocessor (CP0)
  Save PC of offending (or interrupted) instruction

  In MIPS: Exception Program Counter (EPC)
  Save indication of the problem

  In MIPS: Cause register
  We’ll assume 1-bit

  0 for undefined opcode, 1 for overflow

  Jump to handler at 8000 00180

Chapter 4 — The Processor — 53

An Alternate Mechanism
  Vectored Interrupts

  Handler address determined by the cause
  Example:

  Undefined opcode: C000 0000
  Overflow: C000 0020
  …: C000 0040

  Instructions either
  Deal with the interrupt, or
  Jump to real handler

Chapter 4 — The Processor — 54

Handler Actions
  Read cause, and transfer to relevant

handler
  Determine action required
  If restartable

  Take corrective action
  use EPC to return to program

  Otherwise
  Terminate program
  Report error using EPC, cause, …

Chapter 4 — The Processor — 55

Exceptions in a Pipeline
  Another form of control hazard
  Consider overflow on add in EX stage

add $1, $2, $1

  Prevent $1 from being clobbered
  Complete previous instructions
  Flush add and subsequent instructions
  Set Cause and EPC register values
  Transfer control to handler

  Similar to mispredicted branch
  Use much of the same hardware

Chapter 4 — The Processor — 56

Pipeline with Exceptions

Chapter 4 — The Processor — 57

Exception Properties
  Restartable exceptions

  Pipeline can flush the instruction
  Handler executes, then returns to the

instruction
  Refetched and executed from scratch

  PC saved in EPC register
  Identifies causing instruction
  Actually PC + 4 is saved

  Handler must adjust

Chapter 4 — The Processor — 58

Exception Example
  Exception on add in

 40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16, 50($7)
…

  Handler
 80000180 sw $25, 1000($0)
80000184 sw $26, 1004($0)
…

Chapter 4 — The Processor — 59

Exception Example

Chapter 4 — The Processor — 60

Exception Example

Chapter 4 — The Processor — 61

Multiple Exceptions
  Pipelining overlaps multiple instructions

  Could have multiple exceptions at once
  Simple approach: deal with exception from

earliest instruction
  Flush subsequent instructions
  “Precise” exceptions

  In complex pipelines
  Multiple instructions issued per cycle
  Out-of-order completion
  Maintaining precise exceptions is difficult!

Chapter 4 — The Processor — 62

Imprecise Exceptions
  Just stop pipeline and save state

  Including exception cause(s)
  Let the handler work out

  Which instruction(s) had exceptions
  Which to complete or flush

  May require “manual” completion

  Simplifies hardware, but more complex handler
software

  Not feasible for complex multiple-issue
out-of-order pipelines

Chapter 4 — The Processor — 63

Fallacies
  Pipelining is easy (!)

  The basic idea is easy
  The devil is in the details

  e.g., detecting data hazards

  Pipelining is independent of technology
  So why haven’t we always done pipelining?
  More transistors make more advanced techniques

feasible
  Pipeline-related ISA design needs to take account of

technology trends
  e.g., predicated instructions

§4.13 Fallacies and P
itfalls

Chapter 4 — The Processor — 64

Pitfalls
  Poor ISA design can make pipelining

harder
  e.g., complex instruction sets (VAX, IA-32)

  Significant overhead to make pipelining work
  IA-32 micro-op approach

  e.g., complex addressing modes
  Register update side effects, memory indirection

Chapter 4 — The Processor — 65

Concluding Remarks
  ISA influences design of datapath and control
  Datapath and control influence design of ISA
  Pipelining improves instruction throughput

using parallelism
  More instructions completed per second
  Latency for each instruction not reduced

  Hazards: structural, data, control
  Multiple issue and dynamic scheduling (ILP)

  Dependencies limit achievable parallelism
  Complexity leads to the power wall

§4.14 C
oncluding R

em
arks

