Evolutionary Computation: Introduction

Based on A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing, Springer, 2003.

Contents

- Positioning of EC and the basic EC metaphor
- Historical perspective
- Biological inspiration:
 - Darwinian evolution theory (simplified!)
 - Genetics (simplified!)
- Motivation for EC
- What can EC do: Examples of application areas

Positioning of EC

- EC is part of computer science
- EC is not part of life sciences/biology
- Biology delivered inspiration and terminology
- EC can be applied in biological research

Brief History 2: The Rise of EC

- 1985: First international conference (ICGA)
- 1990: First international conference in Europe (PPSN)
- 1993: First scientific EC journal (MIT Press)
- 1997: Launch of European EC Research Network EvoNet

EC in the Early 21st Century

- 3 major EC conferences, about 10 small related ones
- 3 scientific core EC journals
- 750-1000 papers published in 2003 (estimate)
- EvoNet has over 150 member institutes
- Uncountable (meaning: many) applications
- Uncountable (meaning: ?) consultancy and R&D firms

Darwinian Evolution 1: Survival of the Fittest

- All environments have finite resources (i.e., can only support a limited number of individuals)
- Life forms have basic instinct/life cycles geared towards reproduction
- Therefore some kind of selection is inevitable
- Those individuals that compete for the resources most effectively have increased chance of reproduction
- Note: fitness in natural evolution is a derived, secondary measure, i.e., we (humans) assign a high fitness to individuals with many offspring

Darwinian Evolution 2: Diversity Drives Change

- Phenotypic traits:
 - Behavior/physical differences that affect response to environment
 - Partly determined by inheritance, partly by factors during development
 - Unique to each individual, partly as a result of random changes
- If phenotypic traits:
 Lead to higher chances of reproduction
 - Can be inherited
 - then they will tend to increase in subsequent generations,
- Leading to new combinations of traits ...

Darwinian Evolution: Summary

- Population consists of diverse set of individuals
- Combinations of traits that are better adapted tend to increase representation in population

Individuals are "units of selection"

- Variations occur through random changes yielding constant source of diversity, coupled with selection means that:
 - Population is the "unit of evolution"
- Note the absence of "guiding force"

Adaptive Landscape Metaphor (Wright, 1932)

- Can envisage population with n traits as existing in a n+1-dimensional space (landscape) with height corresponding to fitness
- Each different individual (phenotype) represents a single point on the landscape
- Population is therefore a "cloud" of points, moving on the landscape over time as it evolves - adaptation

Natural Genetics

- The information required to build a living organism is coded in the DNA of that organism
- Genotype (DNA inside) determines phenotype
- Genes → phenotypic traits is a complex mapping
 One gene may affect many traits (pleiotropy)
 - Many genes may affect one trait (polygeny)
- Small changes in the genotype lead to small changes in the organism (e.g., height, hair color)

Genes and the Genome

- Genes are encoded in strands of DNA called chromosomes
- In most cells, there are two copies of each chromosome (diploidy)
- The complete genetic material in an individual's genotype is called the Genome
- Within a species, most of the genetic material is the same

Genetic Code

- All proteins in life on earth are composed of sequences built from 20 different amino acids
- DNA is built from four nucleotides in a double helix spiral: purines A,G; pyrimidines T,C
- Triplets of these from *codons*, each of which codes for a specific amino acid
- Much redundancy:
 - purines complement pyrimidines
 - the DNA contains much rubbish
 - 4³ = 64 codons code for 20 amino acids
 - genetic code = the mapping from codons to amino acids
- For all natural life on earth, the genetic code is the same!

Motivations in EC: 1

- Nature has always served as a source of inspiration for engineers and scientists
- The best problem solver known in nature is:
 - the (human) brain that created "the wheel, New York, wars and so on" (after Douglas Adams' Hitch-Hikers Guide)
 - the evolution mechanism that created the human brain (after Darwin's Origin of Species)
- Answer 1 → neurocomputing
- Answer 2 → evolutionary computing

Motivations in EC: 2

- Developing, analyzing, applying problem solving methods a.k.a. algorithms is a central theme in mathematics and computer science
- · Time for thorough problem analysis decreases
- · Complexity of problems to be solved increases
- Consequence:

Robust problem solving technology needed

Optimization Example 1: University Timetabling

Enormously large search space

Timetables must be good

"Good" is defined by a number of competing criteria

Timetables must be feasible

Vast majority of search space is infeasible

 Evolution Exaluation & 	porithm Display Advanced	repezcac			
				atties	Ш
valuations: 717 tun No: 0	Last change at: 431	Evaluations per	minute: 14952	Displaying: B	iest riority
	Targets		Wei	ghts	
22		Unplaced Events: 1		J	10
•)		Changes: 0			
1 ()		ve O'Clock Classes: 13			1
6	We	d Afternoo <mark>n Classes: 13</mark>			
60 <u> </u>	Ga	ps in Student Day: 7046			
0 [<u> </u>		Lone Classes: 17708		<u> </u>	1
30		Long Intensive: 0		ĭ_	1
0	0	retion ded Lecturers: 26			
• Ŭ	No	Teaching Free Day 52		L	
0		reacting free buy. Sc		,	
		Site Changes. 0			
		Site Changes: 0		, 	
210	Lo	cation Changes: 49738			
100 - J	F	loom Changes: 11869			
		Progress: 55%			

Modelling Example: Loan Applicant CredibilityC bank evolved
creditability model to predict
oan paying behavior of new
applicantsEvolving: Prediction modelsFitness: Model accuracy on
historical data

Simulation Example: Evolving Artificial Societies

Simulating trade, economic competition, etc. to calibrate models

Use models to optimize strategies and policies

Evolutionary economy

Survival of the fittest is universal (big/small fish)