
Distributed Ledgers

Dr. E. Markakis

Content

 Distributed Ledger Fundamentals and HyperLedger Introduction

 Presented BY: Manjunath N V yoda@security-exploits.com

 HyperLedger Setup tools

 H2020 CHARIOT (IoT Distributed Ledger)

 Reference IoT Scenario the Chariot H2020 Use case

 What a Survey paper is

 A Survey on Distributed ledger technologies for Internet of Things IoT

 Reading Material For Blockchains

mailto:yoda@security-exploits.com

Distributed Ledger

Introduction

Ledger

 The shortcomings of current transaction systems

 During 2000’s financial crisis

Tracing Blockchain’s Origin

Bitcoin Whitepaper: 10/31/2008
https://bitcoin.org/bitcoin.pdf

https://bitcoin.org/bitcoin.pdf

 Centralized Banking: not robust

 Satoshi determined to find the centralized part of banks

 The ledger

 “What if I could turn a bank inside out? Instead of one central party controlling the ledger, what if every user

were recruited to maintain a constantly updated copy?”

 The strength of the digital was perfect copies, so copy the ledger, everywhere, instantly.

 Any ledgers with even one common not agreeing with the masses would be discarded, leaving fraudsters

powerless

 Replace cash with Ledger!

The Long Road to Bitcoin

Decentralization

• Replace cash with Ledger

 Decentralization: get rid of the Third Party

 Satoshi paired two main technologies

 Proof of Work: to solve the double spending problem

 Elliptic Curves: to solve unique access to the ledger

 Nothing was newer than 2001

1. 2001: SHA-256 finalized

2. 1999-present: Byzantine fault tolerance

3. 1999-present: P2P networks

4. 1998: Wei Dai, B-money

5. 1998: Nick Szabo, Bit Gold

6. 1997: HashCash

7. 1992-1993: Proof-of-work for spam

8. 1991: cryptographic timestamp

9. 1980: public key crypto algorithm

The decentralized ledger

Highlights

Blockchain Structure

Source: https://www.edureka.co/blog/blockchain-

tutorial/

https://www.edureka.co/blog/blockchain-tutorial/

What does a block look like?

Why It’s Called “Blockchain”

 Revolutionary Technology

 Protocol

 TCP/IP, HTTP, Cloud Computation, Big Data, IoT, FinTech…

 Melanie Swan: Blockchain: Blueprint for A New Economy, Jan 2015

 Blockchain 1.0

 Bitcoin

 Programmable Money

 Blockchain 2.0

 Ethereum

 Smart Contract

 Blockchain 3.0…

 Non-Financial Uses

 Applications

Blockchain Architecture

Key Concepts of Cryptocurrency

Source: IBM, A new disruption in financial services

 Distributed and sustainable:

 Secure, private, and indelible:

 Transparent and auditable:

 Consensus-based and transactional:

 Orchestrated and flexible:

Building trust with blockchain

 Blockchain user

 Regulator

 Blockchain developer

 Blockchain network operator

 Traditional processing platforms

 Traditional data sources

 Certificate authority

Different Players in Implementation

Block Chain usecase (dubai)

HyperLedger

Introduction

 The Linux Foundation founded Hyperledger in 2015

 Hyperledger Fabric is a platform for distributed ledger solutions in industrial level.

 A modular architecture - Delivers high degrees of confidentiality, resiliency, flexibility and scalability.

 It is designed to support pluggable implementations of different components, and accommodate the

complexity and intricacies that exist across the economic ecosystem.

 Breaks from some other blockchain systems is that it is private and permissioned

Hyperledger Fabric

 Like other blockchain technologies, it has a ledger, uses smart contracts, and is a system by which

participants manage their transactions.

 Ledger data can be stored in multiple formats, consensus mechanisms can be switched in and out.

 Offers the ability to create channels, allowing a group of participants to create a separate ledger of

transactions.

 Hyperledger is based on blockchain but its not a crypto currency.

 There is no mining, just order system do it.

 Operational power: 0.5 million operations per minute where as other blockchain does only 1000.

Hyperledger Fabric - Cont.

 Hyperledger Fabric is enterprise grade distributed ledger based on blockchain technologies that uses

smart contracts to enforce trust between parties.

 Hyperledger in general do not enforce any requirements about the hardware, network

infrastructures, additional software around it, security models etc.

 No concept of computational power.

In Summary

 Permissioned membership

 Performance, scalability, and levels of trust

 Data on a need-to-know basis

 Rich queries over an immutable distributed ledger

 Modular architecture supporting plug-in components

 Protection of digital keys and sensitive data

Advantages of Hyperledger Fabric

 Fabric CA,

 Peer

 Ordering service

 Channel

 Chaincode

Hyperledger Components

The Hyperledger Fabric CA is a Certificate Authority (CA) for Hyperledger Fabric.

It provides features such as:

 registration of identities, or connects to LDAP as the user registry

 issuance of Enrollment Certificates (ECerts)

 certificate renewal and revocation

 consists of both a server and a client component.

Fabric CA

CA – WorkFlow

 Every single operation that is executed inside Hyperledger fabric must be cryptographically signed

with this certificate.

 You can add attributes, roles

 Certificates are X.509 standards.

 You can remove the necessity of certificates if you don’t need it.

 Chaincodes read this data and make business decisions.

CA cont.

 Peer is the place where the ledger and the blockchain data is stored.

 You must have more than one peer in production.

 One peer may be part of many channels.

 Every single channel is inside the peer.

 It endorse any update of the ledger.

 You can create backup of the ledger from the peer

Peer

 Ordering service is the heart of consensus algorithm and the heart of hyper ledger fabric.

 Main role is to provide the order of operations.

 before committing anything to ledger it must pass through the ordering service.

 it is responsible for verification, security, policy verification etc.

Ordering Service

 Channel is a private “subnet” of communication between two or more specific network members.

 A channel is defined by members (organizations), anchor peers per member, the shared ledger,

chaincode application(s) and the ordering service node(s).

 Each peer that joins a channel, has its own identity given by a membership services provider (MSP).

Channel

 channels are completely isolated,

 they have different ledgers, different height of blocks, policies, stories, rules.

 completely isolated instance of hyper ledger fabric.

 never exchange data.

 outside of a channel , one can’t even see that there is a channel.

 you can make a policy who can see the data in the channel and who can make an operation.

 every single party inside a channel must agree about other parties.

Channel cont.

 Versioned: All elements of the configuration have an associated version which is advanced with

every modification. Further, every committed configuration receives a sequence number.

 Permissioned: Each element of the configuration has an associated policy which governs whether or

not modification to that element is permitted. Anyone with a copy of the previous configtx (and no

additional info) may verify the validity of a new config based on these policies.

 Hierarchical: A root configuration group contains sub-groups, and each group of the hierarchy has

associated values and policies. These policies can take advantage of the hierarchy to derive policies

at one level from policies of lower levels.

Channel configuration properties

 A chaincode typically handles business logic agreed to by members of the network, so it similar to a

“smart contract”.

 All your business logic is inside the chaincode.

 Its written in Go. Implementation of java and javascript are on the way.

 Chaincode me installed in every peer and channel.

 Policy must be provided.

Chaincode

 Hyperledger Composer is a set of collaboration tools for building blockchain business networks that

make it simple and fast for business owners and developers to create smart contracts and blockchain

applications to solve business problems

 Extensive

 Open development toolset and

 Framework to make developing Blockchain applications easier.

Hyperledger Composer

Hyperledger setup

 https://hyperledger-fabric.readthedocs.io/en/release-1.4/

Implementation

https://hyperledger-fabric.readthedocs.io/en/release-1.4/

Installing the pre-requisites

 Install cURLDocker Engine: Version 17.03 or higher

 Docker and Docker Compose: 17.06.2-ce or greater

 Go Programming Language

 Go version 1.12.x is required.

 Node.js 10.15.3 and higher

 Python: 2.7.x

https://golang.org/dl/

Reference IoT Scenario the Chariot

H2020 Use case

Use Case: Manufacturing Plant

▪ Industry 4.0 stage with the usage of IoT

▪ Predictive maintenance by data analytics and machine learning

▪ Reduced operational cost due to properly allocated resources for maintenance

▪ Increased revenue due to higher efficacy of manufacturing tools

▪ Increased customer satisfaction as a result of faster demand fulfillment times

▪ Reduced risk thanks to stricter operational compliancy

▪ Correct Operation? Bona Fide Data? Malicious Devices?

▪ All the above can lead to the exact opposite of the aforementioned benefits

39CHARIOT – VESSEDIA Workshop, 9 May 2019, Dublin, Ireland

Reference IoT Scenario

40

Approach to Securing IoT Network

Data Aggregators

IoT Gateways

IoT Sensors

Legend

Wireless

Wired

Approach to Securing IoT Network

41

Certificate Authority

Identity Certificate

42

Approach to Securing IoT Network

Compromised Authority

43

Approach to Securing IoT Network

Power = 3

Power = 1.5

Power = 1

44

Approach to Securing IoT Network

Technologies Used:

▪ Distributed Database

▪ Asymmetric Cryptography

▪ Symmetric Cryptography

▪ Public Key Identification System

▪ Blockchain technology encompasses all the above technologies under a single umbrella

▪ + an immutable record history enabling full post-incident historical analysis

Reading Material For Blockchains

How most BlockChains Work today

 You can download the software as a VM or even compile it yourself.

 You launch the code on your own servers – this makes you a “miner” as soon

as the system has initialized itself.

 The system downloads the entire current BlockChain, from other machines

already running the BlockChain software (there is a web site listing some you

can contact for copies).

http://www.cs.cornell.edu/courses/cs5412/2019sp 46

Next, you verify the BlockChain

 You’ll need to recompute all the Merkle trees and the chain of hashes.

 In fact this may not take enormously long… today. Few BlockChains have

huge amounts of content.

 But someday, we might have BlockChains with hundreds of billions of records

and total sizes in the petabytes. Then download speed and verification time

and storage will become an issue!

http://www.cs.cornell.edu/courses/cs5412/2019sp 47

Meanwhile, new blocks arrive

 Each block extends some specific sequence of prior blocks.

 If you turn out to have downloaded the wrong sequence, you may have to truncate your chain and

download the longer sequence.

 This is a “rollback”. During startup, substantial rollbacks can occur. Later they shouldn’t (assumes a

fully connected network of mostly “correct” miners).

http://www.cs.cornell.edu/courses/cs5412/2019sp 48

At this point you can create transactions

 So, you open for business.

 Someone shows up to buy a glass of your fresh lemonade.

 You’ll generate the transaction (think “credit card payment slip”) and submit

it to the system. It enters a pool of pending transactions.

http://www.cs.cornell.edu/courses/cs5412/2019sp 49

When will your transaction

go through?

 Within an hour or so, you should see that your transaction got included into some block, and also

that everyone seems to have adopted that block.

 The chain has moved six or more blocks into the future.

 So now you can hand that glass of frosty bliss to your happy customer!

http://www.cs.cornell.edu/courses/cs5412/2019sp 50

But nobody can cheat!

 To modify a past record you

need to also modify every

signature subsequent to that

record.

 The step where you have to find

these nonce values will be very

slow and you’ll lose the race.

http://www.cs.cornell.edu/courses/cs5412/2019sp 51

https://medium.com/loom-

network/

What if the attacker is a country?

 A country could build whole datacenters, equipped with hardware to compute SHA-256 at ultra-

high speeds.

 In this case P (using the datacenter) could generate a lot of blocks quickly, for which they would be

paid. Or could have an entire second BlockChain starting from months ago, and longer than the

official main one.

 To prevent most such attacks, BlockChain solutions make the proof-of-work task harder as a

function of the rate at which blocks are being found.

http://www.cs.cornell.edu/courses/cs5412/2019sp 52

What if the attacker is a country?

 In effect, if P controls enough computing power, he can “gain control” of the BlockChain. The proof-

of-work can become so hard that only P has the compute power to solve the puzzle!

 P could then refuse to post some transactions, or cause trouble in other ways.

 But this form of attack has not (yet) been seen.

http://www.cs.cornell.edu/courses/cs5412/2019sp 53

What about races?

 Permissionless BlockChains are at risk of a “race” situation in which one group

of miners is working to append record R, and some other group, record S. A

tie can easily occur.

 BlockChain systems “adopt the longest chain” (may the best miners win).

This can cause a rollback if a few blocks were appended by group A, but then

group B suddenly publishes a longer extension.

 In practice, rollbacks longer than 6 blocks are never observed.

http://www.cs.cornell.edu/courses/cs5412/2019sp 54

In contrast, Permissioned BlockChain

doesn’t need Proof of work

 A permissioned system is operated by known, trusted, authorized servers.

 They won’t attack the chain by trying to overload it with transactions in an

unfair way, and they would charge for any transactions they append on behalf

of external clients.

 So we can avoid this costly step with datacenter BlockChain solutions.

http://www.cs.cornell.edu/courses/cs5412/2019sp 55

What if you don’t really trust the

permissioned provider?

 We can mix methods: a global “proof” with a local “data store”

 Our permissioned provider can commit to some form of cryptographic root of

each new version of the log (or tree), and to a proof that the new version

extends the old version.

 The “commit” is broadly shared and pins the provide down. Then for an

append or a query, the provider can be asked to also provide a proof that they

did the append, or that the query response is correct & complete

http://www.cs.cornell.edu/courses/cs5412/2019sp 56

What’s In a Transaction?

 Some BlockChain systems are very rigid. For example, a BitCoin BlockChain

record can only support a few operations on BitCoins.

 These represent transactions: Ken sells Ittay a packet of gum for 10

 In a permissionless scheme, Ken would probably wait for a while before

handing the gum to Ittay. With permissions, rollback risk can be reduced or

even completely eliminated.

http://www.cs.cornell.edu/courses/cs5412/2019sp 57

Fancier Transactions

 There are several standards for encoding fancier “digital contracts” into

records suitable for BlockChain.

 One, called HyperLedger, uses HTML as its underlying “language”.

 A second, Ethereum, has a sophisticated language of its own, and can even

encode computational tasks into the transaction record.

http://www.cs.cornell.edu/courses/cs5412/2019sp 58

Could we use BlockChain for IOT?

 This is a topic generating huge interest!

 For example, in a smart farm, a BlockChain could be used as a tamperproof

audit trail, proving that animals had proper vaccinations and vet checkups,

tracing food they ate and other life events, and later tracing the entire food

supply chain from farm to table.

 Cornell’s Vegvisir BlockChain focuses on this case. Intermittent connectivity

is a strength of Vegvisir: it can handle periods of disconnection.

http://www.cs.cornell.edu/courses/cs5412/2019sp 59

But there are also many issues

 From the chain, how can an auditor be sure that the transactions reflect the

actual farm with its actual animals and sensors, and not a “simulation” of a

farm with fake information?

 What should be the requirements for this form of monitoring and auditing,

and how costly will it be to perform?

 What if we don’t trust the software? What about privacy?

http://www.cs.cornell.edu/courses/cs5412/2019sp 60

More issues

 Farming is big business, and operates with loans, futures contracts,

conditional agreements that can play out in many ways, etc.

 Would a single chain somehow need to encode all the farm-related digital

contract events in the whole world? Even with one chain, how will its

resources be managed? What would we do if a portion is irretrievably lost?

 If not, if we have multiple chains, how would they be integrated?

http://www.cs.cornell.edu/courses/cs5412/2019sp 61

More Issues

 With permissionless BlockChain, is it really “safe” to trust that after six blocks

have been appended, the chain won’t roll back and invalidate my transaction?

(“When should Ken give the lemonade to Sally?”)

 If a smart contract references future events, what would be the “semantics”

of that contract, in a PL sense? Does the meaning depend on waiting for the

future to occur? Can chains of dependencies arise, or contracts that are

undecidable, or infeasibly complex to “evaluate”?

http://www.cs.cornell.edu/courses/cs5412/2019sp 62

Aside (Time permitting)

 Will Quantum Computing really break cryptography?

 Which is closer to the truth:

➢ A quantum computer can make non-deterministic guesses, check to see

if any are right (like guessing the factors of an RSA key), and then

output the correct one.

➢ A quantum computer can compute a near-infinite number of discrete

fourier transforms “concurrently”, but you can only read out one data-

point of the result at a time.

http://www.cs.cornell.edu/courses/cs5412/2019sp 63

Public Misunderstanding

 Popularity of the “many worlds” interpretation of physics has clouded the

public conception of what a quantum computer can do!

 In fact many worlds could be a valid model, for the most elementary level of

Planck-scale physics (the layer where people talk about mbranes and string

theory, and loop-quantum gravity).

 But our macroscopic (“causally emergent”) world is very remote from that

most basic layer of physical reality.

http://www.cs.cornell.edu/courses/cs5412/2019sp 64

Shor’s Algorithm

 To factor RSA, Shor’s algorithm requires a special circuit specific to the size of

the keys.

 Then we input “all possible” n-bit integers, where n is the key length, like

1024. This involves a “coherent entanglement” of n qbits. But due to errors,

qbits rapidly decohere. Error correction will require vastly more qbits, and

nobody is sure how many. Perhaps millions or billions.]

 The entangled data is then transformed by the circuit, which computes a

DFFT

http://www.cs.cornell.edu/courses/cs5412/2019sp 65

Reading the output

 You read the output of a quantum computer by setting up the experiment

again and again and then repeatedly extracting a single sample.

 Over time, the values you read build up to a kind of probability density

image, like a photo created pixel by pixel.

 In the case of Shor’s algorithm this photo shows peaks that hint at the values

of the factors. Now you can search for the factors close to those peaks.

Quality of the search will depend on the sharpness of the peaks.

http://www.cs.cornell.edu/courses/cs5412/2019sp 66

A lot of assumptions!

 Nobody knows how quantum error correction “scales”. Today it works for 3 to

5 q-bit entanglements, at best.

 Nobody knows how complex a computation we can perform without

destroying coherence. In fact these quantum DFFT operations must be

reversible in order to remain coherent, and hence perfectly precise.

 Nobody knows how quickly we can set up such a run and sample it.

 Nobody knows how sharp the peaks will need to be as a function of key

length.

http://www.cs.cornell.edu/courses/cs5412/2019sp 67

And worst of all…

 Nobody knows if factoring large numbers is even a “hard” problem!

 True, we lack a fast solution today. But the complexity of factoring is

unknown.

 But perhaps some numerical savant will find a solution… with classical

computers! The same goes for finding a nonce with the desired hashing

properties to mine blocks…

http://www.cs.cornell.edu/courses/cs5412/2019sp 68

Unfortunately,

neither Euler nor

Ramanujan really

looked closely at

this question!

The entire Edifice could collapse!

 If you bet heavily on BlockChain,

you are betting that people will

figure out a way to ensure that

it won’t yield to some kind of attack.

 But in fact this is just a bet, today.

http://www.cs.cornell.edu/courses/cs5412/2019sp 69

Provably secure systems

 There is a theory of semantic cryptography safe against quantum attacks. It was developed by

Goldwasser and Micali, who won the Turing Award for the insight.

 They proved that secure encryption schemes must be probabilistic, rather than deterministic, with

many possible encrypted texts corresponding to each message.

 The Goldwasser–Micali (GM) cryptosystem demonstrates the idea.

http://www.cs.cornell.edu/courses/cs5412/2019sp 70

Could a BlockChain Use GM

Cryptographic techniques?

 At present, the GM system is too computationally slow for practical use, and

also causes too much “inflation” in the size of data.



Each bit in the data becomes a point in a very high dimensional space, leading

to a billions-to-one increase in message sizes.

 But continued research may yield much more compact solutions with the

same properties. A new research initiative just started on this topic.

http://www.cs.cornell.edu/courses/cs5412/2019sp 71

