
M2M Communication over
heterogeneous WSN infrastructure
Implementation of MQTT-SN

Kamaratakis Georgios - mtp214

Table of contents: ➔ WSNs

➔ Purpose

➔ Example

➔ MQTT

➔ MQTT-SN

➔ MQTT vs MQTT-SN

➔ Pros & Cons

➔ MQTT-SN Gateway

➔ Implementation

➔ Devices used for this project

WSNs

➔ Bluetooth / BLE
➔ LoRa
➔ Zigbee / 6LowPan
➔ WiFi

Purpose

Connect to any device despite the wireless technology

Example Zigbee device Bluetooth device WiFi device

Or

MQTT

- MQTT Broker
- MQTT Client
- TOPIC

Subscribe
Publish

- QoS
QoS 0 - At most Once
QoS 1 - At least Once
QoS 2 - Exactly Once

- Runs over TCP protocol like HTTP

● It is similar to MQTT
● It is even more Lightweight
● It is designed with scalability in mind
● Taking account of power consumption of IoT

devices
○ There is a new offline keep-alive procedure for

the support of sleeping clients.

● Designed to be used between different
communication networks
○ It is designed that the messages that MQTT-SN

produces are small enough to be contained.

● Architecture:
○ MQTT-SN Client
○ MQTT-SN Gateway
○ MQTT-SN Forwarder

● QoS
QoS 0 - At most Once
QoS 1 - At least Once
QoS 2 - Exactly Once

MQTT-SN

Creator : Ian Craggs (IBM)

MQTT-SN

MQTT-SN Messages:

● ADVERTISE

● SEARCHGW

● GWINFO

● CONNECT

● CONNACK

● REGISTER

● REGACK

● PUBLISH

● PUBACK

● PUBREC, PUBREL, and PUBCOMP

● SUBSCRIBE

● SUBACK

● UNSUBSCRIBE

● UNSUBACK

● PINGREQ

● PINGRESP

● DISCONNECT

MQTT vs MQTT-SN

MQTT:

Runs on TCP:

● Client
● Broker

Simple Implementation

MQTT-SN:

Runs on UDP:

● Client
● Gateway
● Broker
● Forwarder

Smaller message payload

Lower energy consumption

Keep-alive connections (for sleeping devices)

PROs & CONs of MQTT-SN

PROs:

1. MQTT-SN uses topic ID instead of topic name. First
client sends a registration request with topic name
and topic ID (2 octets) to a broker. After the
registration is accepted, client uses topic ID to refer
the topic name. This saves media bandwidth and
device memory - it is quite expensive to keep and send
topic name e.g: home/livingroom/socket2/meter in
memory for each publish message.

1. MQTT-SN does not require TCP/IP stack. It can be
used over a serial link (preferred way), where with
simple link protocol (to distinguish different devices
on the line) overhead is really small. Alternatively it
can be used over UDP, which is less hungry than TCP.

CONs:

1. You need some sort of gateway, which is nothing else

than a TCP or UDP stack moved to a different device.

This can also be a simple device (e.g.: Arduino Uno) just

serving multiple MQTT-SN devices without doing other

job.

2. MQTT-SN is not well supported.

MQTT-SN
Inside a packet

Bits are numbered by MSB (most-significant bit first)

RSMB (Really Small Message Broker):

● Acts as an aggregating gateway

● Acts as a broker

● Transforms messages from MQTT-SN to MQTT and vice versa

● Has two udp ports

● Creator : Ian Craggs (IBM)

● History : Was the basis for Mosquitto MQTT broker

● Alternatives : Project Eclipse Paho

MQTT-SN Gateway

The schema in my implementation:

Schema

Schema

This is the regular procedure of MQTT

We use the mqtt library and we connect to the WiFi

We make configurations for connecting to the

Broker that is connected to MQTT-SN gateway.

Start subscribing/publishing

Implementation [MQTT-SN over WiFi communication]

Implementation [MQTT-SN over BLE communication]

Regular Bluetooth:

● RX

● TX

BLE (Bluetooth Low Energy):

● Service UUID 1
○ Characteristic UUID 1

○ Characteristic UUID 2

○ Characteristic UUID 3

● Service UUID 2
○ ……

In my case:

We adapted the UART scheme on the BLE protocol:

● Service UUID (ble-uart-esp32)
○ Characteristic UUID for (RX)

○ Characteristic UUID for (TX)

● We included the libraries for BLE and for

MQTT-SN

● We implemented UART schema through BLE

and now we can send data as it would be

Serial

● MQTT-SN library on esp32 has handlers for

sending & receiving the packets.

● By modifying those handlers we passed the

buffers from the BLE characteristics to the

MQTT-SN library to parse the packets.

ESP32 Scope

Implementation [MQTT-SN over BLE communication]

● We installed the libraries for BLE in Python

(BluePy) & UDP (Datagram Socket) library

● We read from Rx Characteristic of the RPi and

we pass the buffer as it is to the MQTT-SN

gateway through UDP connection

● Similar goes for when the gateway sends

data through the Tx Characteristic

RPi Scope

Implementation [MQTT-SN over BLE communication]

Example of using MQTT-SN library

Boriz / MQTT-SN-Arduino / Arduino / MqttsnClient / MqttsnClient.ino

https://github.com/boriz/MQTT-SN-Arduino

https://github.com/boriz
https://github.com/boriz/MQTT-SN-Arduino
https://github.com/boriz/MQTT-SN-Arduino/tree/master/Arduino
https://github.com/boriz/MQTT-SN-Arduino/tree/master/Arduino/MqttsnClient
https://github.com/boriz/MQTT-SN-Arduino

Devices Esp32 Ble WiFi Battery

Esp8266 WiFi Wemos D1 Mini

Questions ?

